

API Reference¶

Commands¶

	pyppeteer-install: Download and install chromium for pyppeteer.

Environment Variables¶

	$PYPPETEER_HOME: Specify the directory to be used by pyppeteer.
Pyppeteer uses this directory for extracting downloaded Chromium, and for
making temporary user data directory.
Default location depends on platform:

	Windows: C:\Users\<username>\AppData\Local\pyppeteer
	OS X: /Users/<username>/Library/Application Support/pyppeteer
	Linux: /home/<username>/.local/share/pyppeteer	or in $XDG_DATA_HOME/pyppeteer if $XDG_DATA_HOME is defined.

Details see appdirs’s user_data_dir.

	$PYPPETEER_DOWNLOAD_HOST: Overwrite host part of URL that is used to
download Chromium. Defaults to https://storage.googleapis.com.

	$PYPPETEER_CHROMIUM_REVISION: Specify a certain version of chromium you’d
like pyppeteer to use. Default value can be checked by
pyppeteer.__chromium_revision__.

Launcher¶

	
pyppeteer.launcher.launch(options: dict = None, **kwargs) → pyppeteer.browser.Browser[source]¶
	Start chrome process and return Browser.

This function is a shortcut to Launcher(options, **kwargs).launch().

Available options are:

	ignoreHTTPSErrors (bool): Whether to ignore HTTPS errors. Defaults to
False.
	headless (bool): Whether to run browser in headless mode. Defaults to
True unless appMode or devtools options is True.
	executablePath (str): Path to a Chromium or Chrome executable to run
instead of default bundled Chromium.
	slowMo (int|float): Slow down pyppeteer operations by the specified
amount of milliseconds.
	args (List[str]): Additional arguments (flags) to pass to the browser
process.
	ignoreDefaultArgs (bool): Do not use pyppeteer’s default args. This
is dangerous option; use with care.
	handleSIGINT (bool): Close the browser process on Ctrl+C. Defaults to
True.
	handleSIGTERM (bool): Close the browser process on SIGTERM. Defaults
to True.
	handleSIGHUP (bool): Close the browser process on SIGHUP. Defaults to
True.
	dumpio (bool): Whether to pipe the browser process stdout and stderr
into process.stdout and process.stderr. Defaults to False.
	userDataDir (str): Path to a user data directory.
	env (dict): Specify environment variables that will be visible to the
browser. Defaults to same as python process.
	devtools (bool): Whether to auto-open a DevTools panel for each tab.
If this option is True, the headless option will be set
False.
	logLevel (int|str): Log level to print logs. Defaults to same as the
root logger.
	autoClose (bool): Automatically close browser process when script
completed. Defaults to True.
	loop (asyncio.AbstractEventLoop): Event loop (experimental).
	appMode (bool): Deprecated.

Note

Pyppeteer can also be used to control the Chrome browser, but it works
best with the version of Chromium it is bundled with. There is no
guarantee it will work with any other version. Use executablePath
option with extreme caution.

	
pyppeteer.launcher.connect(options: dict = None, **kwargs) → pyppeteer.browser.Browser[source]¶
	Connect to the existing chrome.

browserWSEndpoint option is necessary to connect to the chrome. The
format is ws://${host}:${port}/devtools/browser/<id>. This value can
get by wsEndpoint.

Available options are:

	browserWSEndpoint (str): A browser websocket endpoint to connect to.
(required)
	ignoreHTTPSErrors (bool): Whether to ignore HTTPS errors. Defaults to
False.
	slowMo (int|float): Slow down pyppeteer’s by the specified amount of
milliseconds.
	logLevel (int|str): Log level to print logs. Defaults to same as the
root logger.
	loop (asyncio.AbstractEventLoop): Event loop (experimental).

	
pyppeteer.launcher.executablePath() → str[source]¶
	Get executable path of default chrome.

Browser Class¶

	
class pyppeteer.browser.Browser(connection: pyppeteer.connection.Connection, contextIds: List[str], ignoreHTTPSErrors: bool, setDefaultViewport: bool, process: Optional[subprocess.Popen] = None, closeCallback: Callable[[], Awaitable[None]] = None, **kwargs)[source]¶
	Bases: pyee.EventEmitter

Browser class.

A Browser object is created when pyppeteer connects to chrome, either
through launch() or
connect().

	
browserContexts¶
	Return a list of all open browser contexts.

In a newly created browser, this will return a single instance of
[BrowserContext]

	
coroutine close() → None[source]¶
	Close connections and terminate browser process.

	
coroutine createIncogniteBrowserContext() → pyppeteer.browser.BrowserContext[source]¶
	[Deprecated] Miss spelled method.

Use createIncognitoBrowserContext() method instead.

	
coroutine createIncognitoBrowserContext() → pyppeteer.browser.BrowserContext[source]¶
	Create a new incognito browser context.

This won’t share cookies/cache with other browser contexts.

browser = await launch()
Create a new incognito browser context.
context = await browser.createIncognitoBrowserContext()
Create a new page in a pristine context.
page = await context.newPage()
Do stuff
await page.goto('https://example.com')
...

	
coroutine disconnect() → None[source]¶
	Disconnect browser.

	
coroutine newPage() → pyppeteer.page.Page[source]¶
	Make new page on this browser and return its object.

	
coroutine pages() → List[pyppeteer.page.Page][source]¶
	Get all pages of this browser.

Non visible pages, such as "background_page", will not be listed
here. You can find then using pyppeteer.target.Target.page().

	
process¶
	Return process of this browser.

If browser instance is created by pyppeteer.launcher.connect(),
return None.

	
targets() → List[pyppeteer.target.Target][source]¶
	Get a list of all active targets inside the browser.

In case of multiple browser contexts, the method will return a list
with all the targets in all browser contexts.

	
coroutine userAgent() → str[source]¶
	Return browser’s original user agent.

Note

Pages can override browser user agent with
pyppeteer.page.Page.setUserAgent().

	
coroutine version() → str[source]¶
	Get version of the browser.

	
wsEndpoint¶
	Return websocket end point url.

BrowserContext Class¶

	
class pyppeteer.browser.BrowserContext(browser: pyppeteer.browser.Browser, contextId: Optional[str])[source]¶
	Bases: pyee.EventEmitter

BrowserContext provides multiple independent browser sessions.

When a browser is launched, it has a single BrowserContext used by default.
The method browser.newPage() creates a page in the default browser
context.

If a page opens another page, e.g. with a window.open call, the popup
will belong to the parent page’s browser context.

Pyppeteer allows creation of “incognito” browser context with
browser.createIncognitoBrowserContext() method.
“incognito” browser contexts don’t write any browser data to disk.

Create new incognito browser context
context = await browser.createIncognitoBrowserContext()
Create a new page inside context
page = await context.newPage()
... do stuff with page ...
await page.goto('https://example.com')
Dispose context once it's no longer needed
await context.close()

	
browser¶
	Return the browser this browser context belongs to.

	
coroutine close() → None[source]¶
	Close the browser context.

All the targets that belongs to the browser context will be closed.

Note

Only incognito browser context can be closed.

	
isIncognite() → bool[source]¶
	[Deprecated] Miss spelled method.

Use isIncognito() method instead.

	
isIncognito() → bool[source]¶
	Return whether BrowserContext is incognito.

The default browser context is the only non-incognito browser context.

Note

The default browser context cannot be closed.

	
coroutine newPage() → pyppeteer.page.Page[source]¶
	Create a new page in the browser context.

	
targets() → List[pyppeteer.target.Target][source]¶
	Return a list of all active targets inside the browser context.

Page Class¶

	
class pyppeteer.page.Page(client: pyppeteer.connection.CDPSession, target: Target, frameTree: Dict[KT, VT], ignoreHTTPSErrors: bool, screenshotTaskQueue: list = None)[source]¶
	Bases: pyee.EventEmitter

Page class.

This class provides methods to interact with a single tab of chrome. One
Browser object might have multiple Page object.

The Page class emits various Events which can be
handled by using on or once method, which is inherited from
pyee’s EventEmitter class.

	
Events = namespace(Close=’close’, Console=’console’, DOMContentLoaded=’domcontentloaded’, Dialog=’dialog’, Error=’error’, FrameAttached=’frameattached’, FrameDetached=’framedetached’, FrameNavigated=’framenavigated’, Load=’load’, Metrics=’metrics’, PageError=’pageerror’, Request=’request’, RequestFailed=’requestfailed’, RequestFinished=’requestfinished’, Response=’response’, WorkerCreated=’workercreated’, WorkerDestroyed=’workerdestroyed’)¶
	Available events.

	
coroutine J(selector: str) → Optional[pyppeteer.element_handle.ElementHandle]¶
	alias to querySelector()

	
coroutine JJ(selector: str) → List[pyppeteer.element_handle.ElementHandle]¶
	alias to querySelectorAll()

	
coroutine JJeval(selector: str, pageFunction: str, *args) → Any¶
	alias to querySelectorAllEval()

	
coroutine Jeval(selector: str, pageFunction: str, *args) → Any¶
	alias to querySelectorEval()

	
coroutine Jx(expression: str) → List[pyppeteer.element_handle.ElementHandle]¶
	alias to xpath()

	
coroutine addScriptTag(options: Dict[KT, VT] = None, **kwargs) → pyppeteer.element_handle.ElementHandle[source]¶
	Add script tag to this page.

	One of url, path or content option is necessary.
		url (string): URL of a script to add.
	path (string): Path to the local JavaScript file to add.
	content (string): JavaScript string to add.
	type (string): Script type. Use module in order to load a
JavaScript ES6 module.

	Return ElementHandle:
	 	ElementHandle
of added tag.

	
coroutine addStyleTag(options: Dict[KT, VT] = None, **kwargs) → pyppeteer.element_handle.ElementHandle[source]¶
	Add style or link tag to this page.

	One of url, path or content option is necessary.
		url (string): URL of the link tag to add.
	path (string): Path to the local CSS file to add.
	content (string): CSS string to add.

	Return ElementHandle:
	 	ElementHandle
of added tag.

	
coroutine authenticate(credentials: Dict[str, str]) → Any[source]¶
	Provide credentials for http authentication.

credentials should be None or dict which has username and
password field.

	
coroutine bringToFront() → None[source]¶
	Bring page to front (activate tab).

	
browser¶
	Get the browser the page belongs to.

	
coroutine click(selector: str, options: dict = None, **kwargs) → None[source]¶
	Click element which matches selector.

This method fetches an element with selector, scrolls it into view
if needed, and then uses mouse to click in the center of the
element. If there’s no element matching selector, the method raises
PageError.

Available options are:

	button (str): left, right, or middle, defaults to
left.
	clickCount (int): defaults to 1.
	delay (int|float): Time to wait between mousedown and
mouseup in milliseconds. defaults to 0.

Note

If this method triggers a navigation event and there’s a
separate waitForNavigation(), you may end up with a race
condition that yields unexpected results. The correct pattern for
click and wait for navigation is the following:

await asyncio.gather(
 page.waitForNavigation(waitOptions),
 page.click(selector, clickOptions),
)

	
coroutine close(options: Dict[KT, VT] = None, **kwargs) → None[source]¶
	Close this page.

Available options:

	runBeforeUnload (bool): Defaults to False. Whether to run the
before unload
page handlers.

By defaults, close() does not run beforeunload handlers.

Note

If runBeforeUnload is passed as True, a beforeunload
dialog might be summoned and should be handled manually via page’s
dialog event.

	
coroutine content() → str[source]¶
	Get the full HTML contents of the page.

Returns HTML including the doctype.

	
coroutine cookies(*urls) → dict[source]¶
	Get cookies.

If no URLs are specified, this method returns cookies for the current
page URL. If URLs are specified, only cookies for those URLs are
returned.

Returned cookies are list of dictionaries which contain these fields:

	name (str)
	value (str)
	url (str)
	domain (str)
	path (str)
	expires (number): Unix time in seconds
	httpOnly (bool)
	secure (bool)
	session (bool)
	sameSite (str): 'Strict' or 'Lax'

	
coverage¶
	Return Coverage.

	
coroutine deleteCookie(*cookies) → None[source]¶
	Delete cookie.

cookies should be dictionaries which contain these fields:

	name (str): required
	url (str)
	domain (str)
	path (str)
	secure (bool)

	
coroutine emulate(options: dict = None, **kwargs) → None[source]¶
	Emulate given device metrics and user agent.

This method is a shortcut for calling two methods:

	setUserAgent()
	setViewport()

options is a dictionary containing these fields:

	viewport (dict)	width (int): page width in pixels.
	height (int): page width in pixels.
	deviceScaleFactor (float): Specify device scale factor (can be
thought as dpr). Defaults to 1.
	isMobile (bool): Whether the meta viewport tag is taken
into account. Defaults to False.
	hasTouch (bool): Specifies if viewport supports touch events.
Defaults to False.
	isLandscape (bool): Specifies if viewport is in landscape mode.
Defaults to False.

	userAgent (str): user agent string.

	
coroutine emulateMedia(mediaType: str = None) → None[source]¶
	Emulate css media type of the page.

	Parameters:	mediaType (str) – Changes the CSS media type of the page. The only
allowed values are 'screen', 'print', and
None. Passing None disables media
emulation.

	
coroutine evaluate(pageFunction: str, *args, force_expr: bool = False) → Any[source]¶
	Execute js-function or js-expression on browser and get result.

	Parameters:		pageFunction (str) – String of js-function/expression to be executed
on the browser.
	force_expr (bool) – If True, evaluate pageFunction as expression.
If False (default), try to automatically detect
function or expression.

note: force_expr option is a keyword only argument.

	
coroutine evaluateHandle(pageFunction: str, *args) → pyppeteer.execution_context.JSHandle[source]¶
	Execute function on this page.

Difference between evaluate() and
evaluateHandle() is that
evaluateHandle returns JSHandle object (not value).

	Parameters:	pageFunction (str) – JavaScript function to be executed.

	
coroutine evaluateOnNewDocument(pageFunction: str, *args) → None[source]¶
	Add a JavaScript function to the document.

This function would be invoked in one of the following scenarios:

	whenever the page is navigated
	whenever the child frame is attached or navigated. In this case, the
function is invoked in the context of the newly attached frame.

	
coroutine exposeFunction(name: str, pyppeteerFunction: Callable[[…], Any]) → None[source]¶
	Add python function to the browser’s window object as name.

Registered function can be called from chrome process.

	Parameters:		name (string) – Name of the function on the window object.
	pyppeteerFunction (Callable) – Function which will be called on
python process. This function should
not be asynchronous function.

	
coroutine focus(selector: str) → None[source]¶
	Focus the element which matches selector.

If no element matched the selector, raise PageError.

	
frames¶
	Get all frames of this page.

	
coroutine goBack(options: dict = None, **kwargs) → Optional[pyppeteer.network_manager.Response][source]¶
	Navigate to the previous page in history.

Available options are same as goto() method.

If cannot go back, return None.

	
coroutine goForward(options: dict = None, **kwargs) → Optional[pyppeteer.network_manager.Response][source]¶
	Navigate to the next page in history.

Available options are same as goto() method.

If cannot go forward, return None.

	
coroutine goto(url: str, options: dict = None, **kwargs) → Optional[pyppeteer.network_manager.Response][source]¶
	Go to the url.

	Parameters:	url (string) – URL to navigate page to. The url should include
scheme, e.g. https://.

Available options are:

	timeout (int): Maximum navigation time in milliseconds, defaults
to 30 seconds, pass 0 to disable timeout. The default value can
be changed by using the setDefaultNavigationTimeout() method.
	waitUntil (str|List[str]): When to consider navigation succeeded,
defaults to load. Given a list of event strings, navigation is
considered to be successful after all events have been fired. Events
can be either:	load: when load event is fired.
	domcontentloaded: when the DOMContentLoaded event is fired.
	networkidle0: when there are no more than 0 network connections
for at least 500 ms.
	networkidle2: when there are no more than 2 network connections
for at least 500 ms.

The Page.goto will raise errors if:

	there’s an SSL error (e.g. in case of self-signed certificates)
	target URL is invalid
	the timeout is exceeded during navigation
	then main resource failed to load

Note

goto() either raise error or return a main resource response.
The only exceptions are navigation to about:blank or navigation
to the same URL with a different hash, which would succeed and
return None.

Note

Headless mode doesn’t support navigation to a PDF document.

	
coroutine hover(selector: str) → None[source]¶
	Mouse hover the element which matches selector.

If no element matched the selector, raise PageError.

	
coroutine injectFile(filePath: str) → str[source]¶
	[Deprecated] Inject file to this page.

This method is deprecated. Use addScriptTag() instead.

	
isClosed() → bool[source]¶
	Indicate that the page has been closed.

	
keyboard¶
	Get Keyboard object.

	
mainFrame¶
	Get main Frame of this page.

	
coroutine metrics() → Dict[str, Any][source]¶
	Get metrics.

Returns dictionary containing metrics as key/value pairs:

	Timestamp (number): The timestamp when the metrics sample was
taken.
	Documents (int): Number of documents in the page.
	Frames (int): Number of frames in the page.
	JSEventListeners (int): Number of events in the page.
	Nodes (int): Number of DOM nodes in the page.
	LayoutCount (int): Total number of full partial page layout.
	RecalcStyleCount (int): Total number of page style
recalculations.
	LayoutDuration (int): Combined duration of page duration.
	RecalcStyleDuration (int): Combined duration of all page style
recalculations.
	ScriptDuration (int): Combined duration of JavaScript
execution.
	TaskDuration (int): Combined duration of all tasks performed by
the browser.
	JSHeapUsedSize (float): Used JavaScript heap size.
	JSHeapTotalSize (float): Total JavaScript heap size.

	
mouse¶
	Get Mouse object.

	
coroutine pdf(options: dict = None, **kwargs) → bytes[source]¶
	Generate a pdf of the page.

Options:

	path (str): The file path to save the PDF.
	scale (float): Scale of the webpage rendering, defaults to 1.
	displayHeaderFooter (bool): Display header and footer.
Defaults to False.
	headerTemplate (str): HTML template for the print header. Should
be valid HTML markup with following classes.	date: formatted print date
	title: document title
	url: document location
	pageNumber: current page number
	totalPages: total pages in the document

	footerTemplate (str): HTML template for the print footer. Should
use the same template as headerTemplate.
	printBackground (bool): Print background graphics. Defaults to
False.
	landscape (bool): Paper orientation. Defaults to False.
	pageRanges (string): Paper ranges to print, e.g., ‘1-5,8,11-13’.
Defaults to empty string, which means all pages.
	format (str): Paper format. If set, takes priority over
width or height. Defaults to Letter.
	width (str): Paper width, accepts values labeled with units.
	height (str): Paper height, accepts values labeled with units.
	margin (dict): Paper margins, defaults to None.	top (str): Top margin, accepts values labeled with units.
	right (str): Right margin, accepts values labeled with units.
	bottom (str): Bottom margin, accepts values labeled with units.
	left (str): Left margin, accepts values labeled with units.

	Returns:	Return generated PDF bytes object.

Note

Generating a pdf is currently only supported in headless mode.

pdf() generates a pdf of the page with print css media. To
generate a pdf with screen media, call
page.emulateMedia('screen') before calling pdf().

Note

By default, pdf() generates a pdf with modified colors for
printing. Use the --webkit-print-color-adjust property to force
rendering of exact colors.

await page.emulateMedia('screen')
await page.pdf({'path': 'page.pdf'})

The width, height, and margin options accept values labeled
with units. Unlabeled values are treated as pixels.

A few examples:

	page.pdf({'width': 100}): prints with width set to 100 pixels.
	page.pdf({'width': '100px'}): prints with width set to 100 pixels.
	page.pdf({'width': '10cm'}): prints with width set to 100 centimeters.

All available units are:

	px: pixel
	in: inch
	cm: centimeter
	mm: millimeter

The format options are:

	Letter: 8.5in x 11in
	Legal: 8.5in x 14in
	Tabloid: 11in x 17in
	Ledger: 17in x 11in
	A0: 33.1in x 46.8in
	A1: 23.4in x 33.1in
	A2: 16.5in x 23.4in
	A3: 11.7in x 16.5in
	A4: 8.27in x 11.7in
	A5: 5.83in x 8.27in
	A6: 4.13in x 5.83in

Note

headerTemplate and footerTemplate markup have the following
limitations:

	Script tags inside templates are not evaluated.
	Page styles are not visible inside templates.

	
coroutine plainText() → str[source]¶
	[Deprecated] Get page content as plain text.

	
coroutine queryObjects(prototypeHandle: pyppeteer.execution_context.JSHandle) → pyppeteer.execution_context.JSHandle[source]¶
	Iterate js heap and finds all the objects with the handle.

	Parameters:	prototypeHandle (JSHandle) – JSHandle of prototype object.

	
coroutine querySelector(selector: str) → Optional[pyppeteer.element_handle.ElementHandle][source]¶
	Get an Element which matches selector.

	Parameters:	selector (str) – A selector to search element.
	Return Optional[ElementHandle]:
	 	If element which matches the
selector is found, return its
ElementHandle. If not found,
returns None.

	
coroutine querySelectorAll(selector: str) → List[pyppeteer.element_handle.ElementHandle][source]¶
	Get all element which matches selector as a list.

	Parameters:	selector (str) – A selector to search element.
	Return List[ElementHandle]:
	 	List of
ElementHandle which matches the
selector. If no element is matched to the selector, return
empty list.

	
coroutine querySelectorAllEval(selector: str, pageFunction: str, *args) → Any[source]¶
	Execute function with all elements which matches selector.

	Parameters:		selector (str) – A selector to query page for.
	pageFunction (str) – String of JavaScript function to be evaluated on
browser. This function takes Array of the
matched elements as the first argument.
	args (Any) – Arguments to pass to pageFunction.

	
coroutine querySelectorEval(selector: str, pageFunction: str, *args) → Any[source]¶
	Execute function with an element which matches selector.

	Parameters:		selector (str) – A selector to query page for.
	pageFunction (str) – String of JavaScript function to be evaluated on
browser. This function takes an element which
matches the selector as a first argument.
	args (Any) – Arguments to pass to pageFunction.

This method raises error if no element matched the selector.

	
coroutine reload(options: dict = None, **kwargs) → Optional[pyppeteer.network_manager.Response][source]¶
	Reload this page.

Available options are same as goto() method.

	
coroutine screenshot(options: dict = None, **kwargs) → Union[bytes, str][source]¶
	Take a screen shot.

The following options are available:

	path (str): The file path to save the image to. The screenshot
type will be inferred from the file extension.
	type (str): Specify screenshot type, can be either jpeg or
png. Defaults to png.
	quality (int): The quality of the image, between 0-100. Not
applicable to png image.
	fullPage (bool): When true, take a screenshot of the full
scrollable page. Defaults to False.
	clip (dict): An object which specifies clipping region of the
page. This option should have the following fields:	x (int): x-coordinate of top-left corner of clip area.
	y (int): y-coordinate of top-left corner of clip area.
	width (int): width of clipping area.
	height (int): height of clipping area.

	omitBackground (bool): Hide default white background and allow
capturing screenshot with transparency.
	encoding (str): The encoding of the image, can be either
'base64' or 'binary'. Defaults to 'binary'.

	
coroutine select(selector: str, *values) → List[str][source]¶
	Select options and return selected values.

If no element matched the selector, raise ElementHandleError.

	
coroutine setBypassCSP(enabled: bool) → None[source]¶
	Toggles bypassing page’s Content-Security-Policy.

Note

CSP bypassing happens at the moment of CSP initialization rather
then evaluation. Usually this means that page.setBypassCSP
should be called before navigating to the domain.

	
coroutine setCacheEnabled(enabled: bool = True) → None[source]¶
	Enable/Disable cache for each request.

By default, caching is enabled.

	
coroutine setContent(html: str) → None[source]¶
	Set content to this page.

	Parameters:	html (str) – HTML markup to assign to the page.

	
coroutine setCookie(*cookies) → None[source]¶
	Set cookies.

cookies should be dictionaries which contain these fields:

	name (str): required
	value (str): required
	url (str)
	domain (str)
	path (str)
	expires (number): Unix time in seconds
	httpOnly (bool)
	secure (bool)
	sameSite (str): 'Strict' or 'Lax'

	
setDefaultNavigationTimeout(timeout: int) → None[source]¶
	Change the default maximum navigation timeout.

This method changes the default timeout of 30 seconds for the following
methods:

	goto()
	goBack()
	goForward()
	reload()
	waitForNavigation()

	Parameters:	timeout (int) – Maximum navigation time in milliseconds. Pass 0
to disable timeout.

	
coroutine setExtraHTTPHeaders(headers: Dict[str, str]) → None[source]¶
	Set extra HTTP headers.

The extra HTTP headers will be sent with every request the page
initiates.

Note

page.setExtraHTTPHeaders does not guarantee the order of
headers in the outgoing requests.

	Parameters:	headers (Dict) – A dictionary containing additional http headers to
be sent with every requests. All header values must
be string.

	
coroutine setJavaScriptEnabled(enabled: bool) → None[source]¶
	Set JavaScript enable/disable.

	
coroutine setOfflineMode(enabled: bool) → None[source]¶
	Set offline mode enable/disable.

	
coroutine setRequestInterception(value: bool) → None[source]¶
	Enable/disable request interception.

Activating request interception enables
Request class’s
abort(),
continue_(), and
response() methods.
This provides the capability to modify network requests that are made
by a page.

	
coroutine setUserAgent(userAgent: str) → None[source]¶
	Set user agent to use in this page.

	Parameters:	userAgent (str) – Specific user agent to use in this page

	
coroutine setViewport(viewport: dict) → None[source]¶
	Set viewport.

	Available options are:
		width (int): page width in pixel.
	height (int): page height in pixel.
	deviceScaleFactor (float): Default to 1.0.
	isMobile (bool): Default to False.
	hasTouch (bool): Default to False.
	isLandscape (bool): Default to False.

	
coroutine tap(selector: str) → None[source]¶
	Tap the element which matches the selector.

	Parameters:	selector (str) – A selector to search element to touch.

	
target¶
	Return a target this page created from.

	
coroutine title() → str[source]¶
	Get page’s title.

	
touchscreen¶
	Get Touchscreen object.

	
tracing¶
	Get tracing object.

	
coroutine type(selector: str, text: str, options: dict = None, **kwargs) → None[source]¶
	Type text on the element which matches selector.

If no element matched the selector, raise PageError.

Details see pyppeteer.input.Keyboard.type().

	
url¶
	Get URL of this page.

	
viewport¶
	Get viewport as a dictionary.

Fields of returned dictionary is same as setViewport().

	
waitFor(selectorOrFunctionOrTimeout: Union[str, int, float], options: dict = None, *args, **kwargs) → Awaitable[T_co][source]¶
	Wait for function, timeout, or element which matches on page.

This method behaves differently with respect to the first argument:

	If selectorOrFunctionOrTimeout is number (int or float), then it
is treated as a timeout in milliseconds and this returns future which
will be done after the timeout.
	If selectorOrFunctionOrTimeout is a string of JavaScript
function, this method is a shortcut to waitForFunction().
	If selectorOrFunctionOrTimeout is a selector string or xpath
string, this method is a shortcut to waitForSelector() or
waitForXPath(). If the string starts with //, the string is
treated as xpath.

Pyppeteer tries to automatically detect function or selector, but
sometimes miss-detects. If not work as you expected, use
waitForFunction() or waitForSelector() directly.

	Parameters:		selectorOrFunctionOrTimeout – A selector, xpath, or function
string, or timeout (milliseconds).
	args (Any) – Arguments to pass the function.

	Returns:	Return awaitable object which resolves to a JSHandle of the
success value.

Available options: see waitForFunction() or
waitForSelector()

	
waitForFunction(pageFunction: str, options: dict = None, *args, **kwargs) → Awaitable[T_co][source]¶
	Wait until the function completes and returns a truthy value.

	Parameters:	args (Any) – Arguments to pass to pageFunction.
	Returns:	Return awaitable object which resolves when the
pageFunction returns a truthy value. It resolves to a
JSHandle of the truthy
value.

This method accepts the following options:

	polling (str|number): An interval at which the pageFunction
is executed, defaults to raf. If polling is a number, then
it is treated as an interval in milliseconds at which the function
would be executed. If polling is a string, then it can be one of
the following values:	raf: to constantly execute pageFunction in
requestAnimationFrame callback. This is the tightest polling
mode which is suitable to observe styling changes.
	mutation: to execute pageFunction on every DOM mutation.

	timeout (int|float): maximum time to wait for in milliseconds.
Defaults to 30000 (30 seconds). Pass 0 to disable timeout.

	
coroutine waitForNavigation(options: dict = None, **kwargs) → Optional[pyppeteer.network_manager.Response][source]¶
	Wait for navigation.

Available options are same as goto() method.

This returns Response when the page
navigates to a new URL or reloads. It is useful for when you run code
which will indirectly cause the page to navigate. In case of navigation
to a different anchor or navigation due to
History API
usage, the navigation will return None.

Consider this example:

navigationPromise = async.ensure_future(page.waitForNavigation())
await page.click('a.my-link') # indirectly cause a navigation
await navigationPromise # wait until navigation finishes

or,

await asyncio.wait([
 page.click('a.my-link'),
 page.waitForNavigation(),
])

Note

Usage of the History API to change the URL is considered a
navigation.

	
coroutine waitForRequest(urlOrPredicate: Union[str, Callable[[pyppeteer.network_manager.Request], bool]], options: Dict[KT, VT] = None, **kwargs) → pyppeteer.network_manager.Request[source]¶
	Wait for request.

	Parameters:	urlOrPredicate – A URL or function to wait for.

This method accepts below options:

	timeout (int|float): Maximum wait time in milliseconds, defaults
to 30 seconds, pass 0 to disable the timeout.

Example:

firstRequest = await page.waitForRequest('http://example.com/resource')
finalRequest = await page.waitForRequest(lambda req: req.url == 'http://example.com' and req.method == 'GET')
return firstRequest.url

	
coroutine waitForResponse(urlOrPredicate: Union[str, Callable[[pyppeteer.network_manager.Response], bool]], options: Dict[KT, VT] = None, **kwargs) → pyppeteer.network_manager.Response[source]¶
	Wait for response.

	Parameters:	urlOrPredicate – A URL or function to wait for.

This method accepts below options:

	timeout (int|float): Maximum wait time in milliseconds, defaults
to 30 seconds, pass 0 to disable the timeout.

Example:

firstResponse = await page.waitForResponse('http://example.com/resource')
finalResponse = await page.waitForResponse(lambda res: res.url == 'http://example.com' and res.status == 200)
return finalResponse.ok

	
waitForSelector(selector: str, options: dict = None, **kwargs) → Awaitable[T_co][source]¶
	Wait until element which matches selector appears on page.

Wait for the selector to appear in page. If at the moment of
calling the method the selector already exists, the method will
return immediately. If the selector doesn’t appear after the
timeout milliseconds of waiting, the function will raise error.

	Parameters:	selector (str) – A selector of an element to wait for.
	Returns:	Return awaitable object which resolves when element specified
by selector string is added to DOM.

This method accepts the following options:

	visible (bool): Wait for element to be present in DOM and to be
visible; i.e. to not have display: none or visibility: hidden
CSS properties. Defaults to False.
	hidden (bool): Wait for element to not be found in the DOM or to
be hidden, i.e. have display: none or visibility: hidden CSS
properties. Defaults to False.
	timeout (int|float): Maximum time to wait for in milliseconds.
Defaults to 30000 (30 seconds). Pass 0 to disable timeout.

	
waitForXPath(xpath: str, options: dict = None, **kwargs) → Awaitable[T_co][source]¶
	Wait until element which matches xpath appears on page.

Wait for the xpath to appear in page. If the moment of calling the
method the xpath already exists, the method will return
immediately. If the xpath doesn’t appear after timeout milliseconds
of waiting, the function will raise exception.

	Parameters:	xpath (str) – A [xpath] of an element to wait for.
	Returns:	Return awaitable object which resolves when element specified
by xpath string is added to DOM.

Available options are:

	visible (bool): wait for element to be present in DOM and to be
visible, i.e. to not have display: none or visibility: hidden
CSS properties. Defaults to False.
	hidden (bool): wait for element to not be found in the DOM or to
be hidden, i.e. have display: none or visibility: hidden CSS
properties. Defaults to False.
	timeout (int|float): maximum time to wait for in milliseconds.
Defaults to 30000 (30 seconds). Pass 0 to disable timeout.

	
workers¶
	Get all workers of this page.

	
coroutine xpath(expression: str) → List[pyppeteer.element_handle.ElementHandle][source]¶
	Evaluate the XPath expression.

If there are no such elements in this page, return an empty list.

	Parameters:	expression (str) – XPath string to be evaluated.

Worker Class¶

	
class pyppeteer.worker.Worker(client: CDPSession, url: str, consoleAPICalled: Callable[[str, List[pyppeteer.execution_context.JSHandle]], None], exceptionThrown: Callable[[Dict[KT, VT]], None])[source]¶
	Bases: pyee.EventEmitter

The Worker class represents a WebWorker.

The events workercreated and workerdestroyed are emitted on the page
object to signal the worker lifecycle.

page.on('workercreated', lambda worker: print('Worker created:', worker.url))

	
coroutine evaluate(pageFunction: str, *args) → Any[source]¶
	Evaluate pageFunction with args.

Shortcut for (await worker.executionContext).evaluate(pageFunction, *args).

	
coroutine evaluateHandle(pageFunction: str, *args) → pyppeteer.execution_context.JSHandle[source]¶
	Evaluate pageFunction with args and return JSHandle.

Shortcut for (await worker.executionContext).evaluateHandle(pageFunction, *args).

	
coroutine executionContext() → pyppeteer.execution_context.ExecutionContext[source]¶
	Return ExecutionContext.

	
url¶
	Return URL.

Keyboard Class¶

	
class pyppeteer.input.Keyboard(client: pyppeteer.connection.CDPSession)[source]¶
	Bases: object

Keyboard class provides as api for managing a virtual keyboard.

The high level api is type(), which takes raw characters and
generate proper keydown, keypress/input, and keyup events on your page.

For finer control, you can use down(), up(), and
sendCharacter() to manually fire events as if they were generated
from a real keyboard.

An example of holding down Shift in order to select and delete some
text:

await page.keyboard.type('Hello, World!')
await page.keyboard.press('ArrowLeft')

await page.keyboard.down('Shift')
for i in ' World':
 await page.keyboard.press('ArrowLeft')
await page.keyboard.up('Shift')

await page.keyboard.press('Backspace')
Result text will end up saying 'Hello!'.

An example of pressing A:

await page.keyboard.down('Shift')
await page.keyboard.press('KeyA')
await page.keyboard.up('Shift')

	
coroutine down(key: str, options: dict = None, **kwargs) → None[source]¶
	Dispatch a keydown event with key.

If key is a single character and no modifier keys besides Shift
are being held down, and a keypress/input event will also
generated. The text option can be specified to force an input
event to be generated.

If key is a modifier key, like Shift, Meta, or Alt,
subsequent key presses will be sent with that modifier active. To
release the modifier key, use up() method.

	Parameters:		key (str) – Name of key to press, such as ArrowLeft.
	options (dict) – Option can have text field, and if this option
specified, generate an input event with this text.

Note

Modifier keys DO influence down(). Holding down shift
will type the text in upper case.

	
coroutine press(key: str, options: Dict[KT, VT] = None, **kwargs) → None[source]¶
	Press key.

If key is a single character and no modifier keys besides
Shift are being held down, a keypress/input event will also
generated. The text option can be specified to force an input event
to be generated.

	Parameters:	key (str) – Name of key to press, such as ArrowLeft.

This method accepts the following options:

	text (str): If specified, generates an input event with this
text.
	delay (int|float): Time to wait between keydown and
keyup. Defaults to 0.

Note

Modifier keys DO effect press(). Holding down Shift will
type the text in upper case.

	
coroutine sendCharacter(char: str) → None[source]¶
	Send character into the page.

This method dispatches a keypress and input event. This does
not send a keydown or keyup event.

Note

Modifier keys DO NOT effect sendCharacter(). Holding down
shift will not type the text in upper case.

	
coroutine type(text: str, options: Dict[KT, VT] = None, **kwargs) → None[source]¶
	Type characters into a focused element.

This method sends keydown, keypress/input, and keyup
event for each character in the text.

To press a special key, like Control or ArrowDown, use
press() method.

	Parameters:		text (str) – Text to type into a focused element.
	options (dict) – Options can have delay (int|float) field, which
specifies time to wait between key presses in milliseconds. Defaults
to 0.

Note

Modifier keys DO NOT effect type(). Holding down shift
will not type the text in upper case.

	
coroutine up(key: str) → None[source]¶
	Dispatch a keyup event of the key.

	Parameters:	key (str) – Name of key to release, such as ArrowLeft.

Mouse Class¶

	
class pyppeteer.input.Mouse(client: pyppeteer.connection.CDPSession, keyboard: pyppeteer.input.Keyboard)[source]¶
	Bases: object

Mouse class.

	
coroutine click(x: float, y: float, options: dict = None, **kwargs) → None[source]¶
	Click button at (x, y).

Shortcut to move(), down(), and up().

This method accepts the following options:

	button (str): left, right, or middle, defaults to
left.
	clickCount (int): defaults to 1.
	delay (int|float): Time to wait between mousedown and
mouseup in milliseconds. Defaults to 0.

	
coroutine down(options: dict = None, **kwargs) → None[source]¶
	Press down button (dispatches mousedown event).

This method accepts the following options:

	button (str): left, right, or middle, defaults to
left.
	clickCount (int): defaults to 1.

	
coroutine move(x: float, y: float, options: dict = None, **kwargs) → None[source]¶
	Move mouse cursor (dispatches a mousemove event).

Options can accepts steps (int) field. If this steps option
specified, Sends intermediate mousemove events. Defaults to 1.

	
coroutine up(options: dict = None, **kwargs) → None[source]¶
	Release pressed button (dispatches mouseup event).

This method accepts the following options:

	button (str): left, right, or middle, defaults to
left.
	clickCount (int): defaults to 1.

Tracing Class¶

	
class pyppeteer.tracing.Tracing(client: pyppeteer.connection.CDPSession)[source]¶
	Bases: object

Tracing class.

You can use start() and stop() to create a trace file which can
be opened in Chrome DevTools or
timeline viewer.

await page.tracing.start({'path': 'trace.json'})
await page.goto('https://www.google.com')
await page.tracing.stop()

	
coroutine start(options: dict = None, **kwargs) → None[source]¶
	Start tracing.

Only one trace can be active at a time per browser.

This method accepts the following options:

	path (str): A path to write the trace file to.
	screenshots (bool): Capture screenshots in the trace.
	categories (List[str]): Specify custom categories to use instead
of default.

	
coroutine stop() → str[source]¶
	Stop tracing.

	Returns:	trace data as string.

Dialog Class¶

	
class pyppeteer.dialog.Dialog(client: pyppeteer.connection.CDPSession, type: str, message: str, defaultValue: str = ‘’)[source]¶
	Bases: object

Dialog class.

Dialog objects are dispatched by page via the dialog event.

An example of using Dialog class:

browser = await launch()
page = await browser.newPage()

async def close_dialog(dialog):
 print(dialog.message)
 await dialog.dismiss()
 await browser.close()

page.on(
 'dialog',
 lambda dialog: asyncio.ensure_future(close_dialog(dialog))
)
await page.evaluate('() => alert("1")')

	
coroutine accept(promptText: str = ‘’) → None[source]¶
	Accept the dialog.

	promptText (str): A text to enter in prompt. If the dialog’s type
is not prompt, this does not cause any effect.

	
defaultValue¶
	If dialog is prompt, get default prompt value.

If dialog is not prompt, return empty string ('').

	
coroutine dismiss() → None[source]¶
	Dismiss the dialog.

	
message¶
	Get dialog message.

	
type¶
	Get dialog type.

One of alert, beforeunload, confirm, or prompt.

ConsoleMessage Class¶

	
class pyppeteer.page.ConsoleMessage(type: str, text: str, args: List[pyppeteer.execution_context.JSHandle] = None)[source]¶
	Bases: object

Console message class.

ConsoleMessage objects are dispatched by page via the console event.

	
args¶
	Return list of args (JSHandle) of this message.

	
text¶
	Return text representation of this message.

	
type¶
	Return type of this message.

Frame Class¶

	
class pyppeteer.frame_manager.Frame(client: pyppeteer.connection.CDPSession, parentFrame: Optional[Frame], frameId: str)[source]¶
	Bases: object

Frame class.

Frame objects can be obtained via pyppeteer.page.Page.mainFrame.

	
coroutine J(selector: str) → Optional[pyppeteer.element_handle.ElementHandle]¶
	Alias to querySelector()

	
coroutine JJ(selector: str) → List[pyppeteer.element_handle.ElementHandle]¶
	Alias to querySelectorAll()

	
coroutine JJeval(selector: str, pageFunction: str, *args) → Optional[Dict[KT, VT]]¶
	Alias to querySelectorAllEval()

	
coroutine Jeval(selector: str, pageFunction: str, *args) → Any¶
	Alias to querySelectorEval()

	
coroutine Jx(expression: str) → List[pyppeteer.element_handle.ElementHandle]¶
	Alias to xpath()

	
coroutine addScriptTag(options: Dict[KT, VT]) → pyppeteer.element_handle.ElementHandle[source]¶
	Add script tag to this frame.

Details see pyppeteer.page.Page.addScriptTag().

	
coroutine addStyleTag(options: Dict[KT, VT]) → pyppeteer.element_handle.ElementHandle[source]¶
	Add style tag to this frame.

Details see pyppeteer.page.Page.addStyleTag().

	
childFrames¶
	Get child frames.

	
coroutine click(selector: str, options: dict = None, **kwargs) → None[source]¶
	Click element which matches selector.

Details see pyppeteer.page.Page.click().

	
coroutine content() → str[source]¶
	Get the whole HTML contents of the page.

	
coroutine evaluate(pageFunction: str, *args, force_expr: bool = False) → Any[source]¶
	Evaluate pageFunction on this frame.

Details see pyppeteer.page.Page.evaluate().

	
coroutine evaluateHandle(pageFunction: str, *args) → pyppeteer.execution_context.JSHandle[source]¶
	Execute function on this frame.

Details see pyppeteer.page.Page.evaluateHandle().

	
coroutine executionContext() → Optional[pyppeteer.execution_context.ExecutionContext][source]¶
	Return execution context of this frame.

Return ExecutionContext
associated to this frame.

	
coroutine focus(selector: str) → None[source]¶
	Focus element which matches selector.

Details see pyppeteer.page.Page.focus().

	
coroutine hover(selector: str) → None[source]¶
	Mouse hover the element which matches selector.

Details see pyppeteer.page.Page.hover().

	
coroutine injectFile(filePath: str) → str[source]¶
	[Deprecated] Inject file to the frame.

	
isDetached() → bool[source]¶
	Return True if this frame is detached.

Otherwise return False.

	
name¶
	Get frame name.

	
parentFrame¶
	Get parent frame.

If this frame is main frame or detached frame, return None.

	
coroutine querySelector(selector: str) → Optional[pyppeteer.element_handle.ElementHandle][source]¶
	Get element which matches selector string.

Details see pyppeteer.page.Page.querySelector().

	
coroutine querySelectorAll(selector: str) → List[pyppeteer.element_handle.ElementHandle][source]¶
	Get all elements which matches selector.

Details see pyppeteer.page.Page.querySelectorAll().

	
coroutine querySelectorAllEval(selector: str, pageFunction: str, *args) → Optional[Dict[KT, VT]][source]¶
	Execute function on all elements which matches selector.

Details see pyppeteer.page.Page.querySelectorAllEval().

	
coroutine querySelectorEval(selector: str, pageFunction: str, *args) → Any[source]¶
	Execute function on element which matches selector.

Details see pyppeteer.page.Page.querySelectorEval().

	
coroutine select(selector: str, *values) → List[str][source]¶
	Select options and return selected values.

Details see pyppeteer.page.Page.select().

	
coroutine setContent(html: str) → None[source]¶
	Set content to this page.

	
coroutine tap(selector: str) → None[source]¶
	Tap the element which matches the selector.

Details see pyppeteer.page.Page.tap().

	
coroutine title() → str[source]¶
	Get title of the frame.

	
coroutine type(selector: str, text: str, options: dict = None, **kwargs) → None[source]¶
	Type text on the element which matches selector.

Details see pyppeteer.page.Page.type().

	
url¶
	Get url of the frame.

	
waitFor(selectorOrFunctionOrTimeout: Union[str, int, float], options: dict = None, *args, **kwargs) → Union[Awaitable[T_co], pyppeteer.frame_manager.WaitTask][source]¶
	Wait until selectorOrFunctionOrTimeout.

Details see pyppeteer.page.Page.waitFor().

	
waitForFunction(pageFunction: str, options: dict = None, *args, **kwargs) → pyppeteer.frame_manager.WaitTask[source]¶
	Wait until the function completes.

Details see pyppeteer.page.Page.waitForFunction().

	
waitForSelector(selector: str, options: dict = None, **kwargs) → pyppeteer.frame_manager.WaitTask[source]¶
	Wait until element which matches selector appears on page.

Details see pyppeteer.page.Page.waitForSelector().

	
waitForXPath(xpath: str, options: dict = None, **kwargs) → pyppeteer.frame_manager.WaitTask[source]¶
	Wait until element which matches xpath appears on page.

Details see pyppeteer.page.Page.waitForXPath().

	
coroutine xpath(expression: str) → List[pyppeteer.element_handle.ElementHandle][source]¶
	Evaluate the XPath expression.

If there are no such elements in this frame, return an empty list.

	Parameters:	expression (str) – XPath string to be evaluated.

ExecutionContext Class¶

	
class pyppeteer.execution_context.ExecutionContext(client: pyppeteer.connection.CDPSession, contextPayload: Dict[KT, VT], objectHandleFactory: Any, frame: Frame = None)[source]¶
	Bases: object

Execution Context class.

	
coroutine evaluate(pageFunction: str, *args, force_expr: bool = False) → Any[source]¶
	Execute pageFunction on this context.

Details see pyppeteer.page.Page.evaluate().

	
coroutine evaluateHandle(pageFunction: str, *args, force_expr: bool = False) → pyppeteer.execution_context.JSHandle[source]¶
	Execute pageFunction on this context.

Details see pyppeteer.page.Page.evaluateHandle().

	
frame¶
	Return frame associated with this execution context.

	
coroutine queryObjects(prototypeHandle: pyppeteer.execution_context.JSHandle) → pyppeteer.execution_context.JSHandle[source]¶
	Send query.

Details see pyppeteer.page.Page.queryObjects().

JSHandle Class¶

	
class pyppeteer.execution_context.JSHandle(context: pyppeteer.execution_context.ExecutionContext, client: pyppeteer.connection.CDPSession, remoteObject: Dict[KT, VT])[source]¶
	Bases: object

JSHandle class.

JSHandle represents an in-page JavaScript object. JSHandle can be created
with the evaluateHandle() method.

	
asElement() → Optional[ElementHandle][source]¶
	Return either null or the object handle itself.

	
coroutine dispose() → None[source]¶
	Stop referencing the handle.

	
executionContext¶
	Get execution context of this handle.

	
coroutine getProperties() → Dict[str, pyppeteer.execution_context.JSHandle][source]¶
	Get all properties of this handle.

	
coroutine getProperty(propertyName: str) → pyppeteer.execution_context.JSHandle[source]¶
	Get property value of propertyName.

	
coroutine jsonValue() → Dict[KT, VT][source]¶
	Get Jsonized value of this object.

	
toString() → str[source]¶
	Get string representation.

ElementHandle Class¶

	
class pyppeteer.element_handle.ElementHandle(context: pyppeteer.execution_context.ExecutionContext, client: pyppeteer.connection.CDPSession, remoteObject: dict, page: Any, frameManager: FrameManager)[source]¶
	Bases: pyppeteer.execution_context.JSHandle

ElementHandle class.

This class represents an in-page DOM element. ElementHandle can be created
by the pyppeteer.page.Page.querySelector() method.

ElementHandle prevents DOM element from garbage collection unless the
handle is disposed. ElementHandles are automatically disposed when their
origin frame gets navigated.

ElementHandle isinstance can be used as arguments in
pyppeteer.page.Page.querySelectorEval() and
pyppeteer.page.Page.evaluate() methods.

	
coroutine J(selector: str) → Optional[pyppeteer.element_handle.ElementHandle]¶
	alias to querySelector()

	
coroutine JJ(selector: str) → List[pyppeteer.element_handle.ElementHandle]¶
	alias to querySelectorAll()

	
coroutine JJeval(selector: str, pageFunction: str, *args) → Any¶
	alias to querySelectorAllEval()

	
coroutine Jeval(selector: str, pageFunction: str, *args) → Any¶
	alias to querySelectorEval()

	
coroutine Jx(expression: str) → List[pyppeteer.element_handle.ElementHandle]¶
	alias to xpath()

	
asElement() → pyppeteer.element_handle.ElementHandle[source]¶
	Return this ElementHandle.

	
coroutine boundingBox() → Optional[Dict[str, float]][source]¶
	Return bounding box of this element.

If the element is not visible, return None.

This method returns dictionary of bounding box, which contains:

	x (int): The X coordinate of the element in pixels.
	y (int): The Y coordinate of the element in pixels.
	width (int): The width of the element in pixels.
	height (int): The height of the element in pixels.

	
coroutine boxModel() → Optional[Dict[KT, VT]][source]¶
	Return boxes of element.

Return None if element is not visible. Boxes are represented as an
list of points; each Point is a dictionary {x, y}. Box points are
sorted clock-wise.

Returned value is a dictionary with the following fields:

	content (List[Dict]): Content box.
	padding (List[Dict]): Padding box.
	border (List[Dict]): Border box.
	margin (List[Dict]): Margin box.
	width (int): Element’s width.
	height (int): Element’s height.

	
coroutine click(options: dict = None, **kwargs) → None[source]¶
	Click the center of this element.

If needed, this method scrolls element into view. If the element is
detached from DOM, the method raises ElementHandleError.

options can contain the following fields:

	button (str): left, right, of middle, defaults to
left.
	clickCount (int): Defaults to 1.
	delay (int|float): Time to wait between mousedown and
mouseup in milliseconds. Defaults to 0.

	
coroutine contentFrame() → Optional[pyppeteer.frame_manager.Frame][source]¶
	Return the content frame for the element handle.

Return None if this handle is not referencing iframe.

	
coroutine focus() → None[source]¶
	Focus on this element.

	
coroutine hover() → None[source]¶
	Move mouse over to center of this element.

If needed, this method scrolls element into view. If this element is
detached from DOM tree, the method raises an ElementHandleError.

	
coroutine isIntersectingViewport() → bool[source]¶
	Return True if the element is visible in the viewport.

	
coroutine press(key: str, options: Dict[KT, VT] = None, **kwargs) → None[source]¶
	Press key onto the element.

This method focuses the element, and then uses
pyppeteer.input.keyboard.down() and
pyppeteer.input.keyboard.up().

	Parameters:	key (str) – Name of key to press, such as ArrowLeft.

This method accepts the following options:

	text (str): If specified, generates an input event with this
text.
	delay (int|float): Time to wait between keydown and
keyup. Defaults to 0.

	
coroutine querySelector(selector: str) → Optional[pyppeteer.element_handle.ElementHandle][source]¶
	Return first element which matches selector under this element.

If no element matches the selector, returns None.

	
coroutine querySelectorAll(selector: str) → List[pyppeteer.element_handle.ElementHandle][source]¶
	Return all elements which match selector under this element.

If no element matches the selector, returns empty list ([]).

	
coroutine querySelectorAllEval(selector: str, pageFunction: str, *args) → Any[source]¶
	Run Page.querySelectorAllEval within the element.

This method runs Array.from(document.querySelectorAll) within the
element and passes it as the first argument to pageFunction. If
there is no element matching selector, the method raises
ElementHandleError.

If pageFunction returns a promise, then wait for the promise to
resolve and return its value.

Example:

<div class="feed">
 <div class="tweet">Hello!</div>
 <div class="tweet">Hi!</div>
</div>

feedHandle = await page.J('.feed')
assert (await feedHandle.JJeval('.tweet', '(nodes => nodes.map(n => n.innerText))')) == ['Hello!', 'Hi!']

	
coroutine querySelectorEval(selector: str, pageFunction: str, *args) → Any[source]¶
	Run Page.querySelectorEval within the element.

This method runs document.querySelector within the element and
passes it as the first argument to pageFunction. If there is no
element matching selector, the method raises
ElementHandleError.

If pageFunction returns a promise, then wait for the promise to
resolve and return its value.

ElementHandle.Jeval is a shortcut of this method.

Example:

tweetHandle = await page.querySelector('.tweet')
assert (await tweetHandle.querySelectorEval('.like', 'node => node.innerText')) == 100
assert (await tweetHandle.Jeval('.retweets', 'node => node.innerText')) == 10

	
coroutine screenshot(options: Dict[KT, VT] = None, **kwargs) → bytes[source]¶
	Take a screenshot of this element.

If the element is detached from DOM, this method raises an
ElementHandleError.

Available options are same as pyppeteer.page.Page.screenshot().

	
coroutine tap() → None[source]¶
	Tap the center of this element.

If needed, this method scrolls element into view. If the element is
detached from DOM, the method raises ElementHandleError.

	
coroutine type(text: str, options: Dict[KT, VT] = None, **kwargs) → None[source]¶
	Focus the element and then type text.

Details see pyppeteer.input.Keyboard.type() method.

	
coroutine uploadFile(*filePaths) → dict[source]¶
	Upload files.

	
coroutine xpath(expression: str) → List[pyppeteer.element_handle.ElementHandle][source]¶
	Evaluate the XPath expression relative to this elementHandle.

If there are no such elements, return an empty list.

	Parameters:	expression (str) – XPath string to be evaluated.

Request Class¶

	
class pyppeteer.network_manager.Request(client: pyppeteer.connection.CDPSession, requestId: Optional[str], interceptionId: str, isNavigationRequest: bool, allowInterception: bool, url: str, resourceType: str, payload: dict, frame: Optional[pyppeteer.frame_manager.Frame], redirectChain: List[Request])[source]¶
	Bases: object

Request class.

Whenever the page sends a request, such as for a network resource, the
following events are emitted by pyppeteer’s page:

	'request': emitted when the request is issued by the page.
	'response': emitted when/if the response is received for the request.
	'requestfinished': emitted when the response body is downloaded and
the request is complete.

If request fails at some point, then instead of 'requestfinished' event
(and possibly instead of 'response' event), the 'requestfailed'
event is emitted.

If request gets a 'redirect' response, the request is successfully
finished with the 'requestfinished' event, and a new request is issued
to a redirect url.

	
coroutine abort(errorCode: str = ‘failed’) → None[source]¶
	Abort request.

To use this, request interception should be enabled by
pyppeteer.page.Page.setRequestInterception().
If request interception is not enabled, raise NetworkError.

errorCode is an optional error code string. Defaults to failed,
could be one of the following:

	aborted: An operation was aborted (due to user action).
	accessdenied: Permission to access a resource, other than the
network, was denied.
	addressunreachable: The IP address is unreachable. This usually
means that there is no route to the specified host or network.
	blockedbyclient: The client chose to block the request.
	blockedbyresponse: The request failed because the request was
delivered along with requirements which are not met
(‘X-Frame-Options’ and ‘Content-Security-Policy’ ancestor check,
for instance).
	connectionaborted: A connection timeout as a result of not
receiving an ACK for data sent.
	connectionclosed: A connection was closed (corresponding to a TCP
FIN).
	connectionfailed: A connection attempt failed.
	connectionrefused: A connection attempt was refused.
	connectionreset: A connection was reset (corresponding to a TCP
RST).
	internetdisconnected: The Internet connection has been lost.
	namenotresolved: The host name could not be resolved.
	timedout: An operation timed out.
	failed: A generic failure occurred.

	
coroutine continue_(overrides: Dict[KT, VT] = None) → None[source]¶
	Continue request with optional request overrides.

To use this method, request interception should be enabled by
pyppeteer.page.Page.setRequestInterception(). If request
interception is not enabled, raise NetworkError.

overrides can have the following fields:

	url (str): If set, the request url will be changed.
	method (str): If set, change the request method (e.g. GET).
	postData (str): If set, change the post data or request.
	headers (dict): If set, change the request HTTP header.

	
failure() → Optional[Dict[KT, VT]][source]¶
	Return error text.

Return None unless this request was failed, as reported by
requestfailed event.

When request failed, this method return dictionary which has a
errorText field, which contains human-readable error message, e.g.
'net::ERR_RAILED'.

	
frame¶
	Return a matching frame object.

Return None if navigating to error page.

	
headers¶
	Return a dictionary of HTTP headers of this request.

All header names are lower-case.

	
isNavigationRequest() → bool[source]¶
	Whether this request is driving frame’s navigation.

	
method¶
	Return this request’s method (GET, POST, etc.).

	
postData¶
	Return post body of this request.

	
redirectChain¶
	Return chain of requests initiated to fetch a resource.

	If there are no redirects and request was successful, the chain will
be empty.
	If a server responds with at least a single redirect, then the chain
will contain all the requests that were redirected.

redirectChain is shared between all the requests of the same chain.

	
resourceType¶
	Resource type of this request perceived by the rendering engine.

ResourceType will be one of the following: document,
stylesheet, image, media, font, script,
texttrack, xhr, fetch, eventsource, websocket,
manifest, other.

	
coroutine respond(response: Dict[KT, VT]) → None[source]¶
	Fulfills request with given response.

To use this, request interception should by enabled by
pyppeteer.page.Page.setRequestInterception(). Request
interception is not enabled, raise NetworkError.

response is a dictionary which can have the following fields:

	status (int): Response status code, defaults to 200.
	headers (dict): Optional response headers.
	contentType (str): If set, equals to setting Content-Type
response header.
	body (str|bytes): Optional response body.

	
response¶
	Return matching Response object, or None.

If the response has not been received, return None.

	
url¶
	URL of this request.

Response Class¶

	
class pyppeteer.network_manager.Response(client: pyppeteer.connection.CDPSession, request: pyppeteer.network_manager.Request, status: int, headers: Dict[str, str], fromDiskCache: bool, fromServiceWorker: bool, securityDetails: Dict[KT, VT] = None)[source]¶
	Bases: object

Response class represents responses which are received by Page.

	
buffer() → Awaitable[bytes][source]¶
	Return awaitable which resolves to bytes with response body.

	
fromCache¶
	Return True if the response was served from cache.

Here cache is either the browser’s disk cache or memory cache.

	
fromServiceWorker¶
	Return True if the response was served by a service worker.

	
headers¶
	Return dictionary of HTTP headers of this response.

All header names are lower-case.

	
coroutine json() → dict[source]¶
	Get JSON representation of response body.

	
ok¶
	Return bool whether this request is successful (200-299) or not.

	
request¶
	Get matching Request object.

	
securityDetails¶
	Return security details associated with this response.

Security details if the response was received over the secure
connection, or None otherwise.

	
status¶
	Status code of the response.

	
coroutine text() → str[source]¶
	Get text representation of response body.

	
url¶
	URL of the response.

Target Class¶

	
class pyppeteer.browser.Target(targetInfo: Dict[KT, VT], browserContext: BrowserContext, sessionFactory: Callable[[], Coroutine[Any, Any, pyppeteer.connection.CDPSession]], ignoreHTTPSErrors: bool, setDefaultViewport: bool, screenshotTaskQueue: List[T], loop: asyncio.events.AbstractEventLoop)[source]¶
	Bases: object

Browser’s target class.

	
browser¶
	Get the browser the target belongs to.

	
browserContext¶
	Return the browser context the target belongs to.

	
coroutine createCDPSession() → pyppeteer.connection.CDPSession[source]¶
	Create a Chrome Devtools Protocol session attached to the target.

	
opener¶
	Get the target that opened this target.

Top-level targets return None.

	
coroutine page() → Optional[pyppeteer.page.Page][source]¶
	Get page of this target.

If the target is not of type “page” or “background_page”, return
None.

	
type¶
	Get type of this target.

Type can be 'page', 'background_page', 'service_worker',
'browser', or 'other'.

	
url¶
	Get url of this target.

CDPSession Class¶

	
class pyppeteer.connection.CDPSession(connection: Union[pyppeteer.connection.Connection, CDPSession], targetType: str, sessionId: str, loop: asyncio.events.AbstractEventLoop)[source]¶
	Bases: pyee.EventEmitter

Chrome Devtools Protocol Session.

The CDPSession instances are used to talk raw Chrome Devtools
Protocol:

	protocol methods can be called with send() method.
	protocol events can be subscribed to with on() method.

Documentation on DevTools Protocol can be found
here.

	
coroutine detach() → None[source]¶
	Detach session from target.

Once detached, session won’t emit any events and can’t be used to send
messages.

	
send(method: str, params: dict = None) → Awaitable[T_co][source]¶
	Send message to the connected session.

	Parameters:		method (str) – Protocol method name.
	params (dict) – Optional method parameters.

Coverage Class¶

	
class pyppeteer.coverage.Coverage(client: pyppeteer.connection.CDPSession)[source]¶
	Bases: object

Coverage class.

Coverage gathers information about parts of JavaScript and CSS that were
used by the page.

An example of using JavaScript and CSS coverage to get percentage of
initially executed code:

Enable both JavaScript and CSS coverage
await page.coverage.startJSCoverage()
await page.coverage.startCSSCoverage()

Navigate to page
await page.goto('https://example.com')
Disable JS and CSS coverage and get results
jsCoverage = await page.coverage.stopJSCoverage()
cssCoverage = await page.coverage.stopCSSCoverage()
totalBytes = 0
usedBytes = 0
coverage = jsCoverage + cssCoverage
for entry in coverage:
 totalBytes += len(entry['text'])
 for range in entry['ranges']:
 usedBytes += range['end'] - range['start'] - 1

print('Bytes used: {}%'.format(usedBytes / totalBytes * 100))

	
coroutine startCSSCoverage(options: Dict[KT, VT] = None, **kwargs) → None[source]¶
	Start CSS coverage measurement.

Available options are:

	resetOnNavigation (bool): Whether to reset coverage on every
navigation. Defaults to True.

	
coroutine startJSCoverage(options: Dict[KT, VT] = None, **kwargs) → None[source]¶
	Start JS coverage measurement.

Available options are:

	resetOnNavigation (bool): Whether to reset coverage on every
navigation. Defaults to True.
	reportAnonymousScript (bool): Whether anonymous script generated
by the page should be reported. Defaults to False.

Note

Anonymous scripts are ones that don’t have an associated url. These
are scripts that are dynamically created on the page using eval
of new Function. If reportAnonymousScript is set to
True, anonymous scripts will have
__pyppeteer_evaluation_script__ as their url.

	
coroutine stopCSSCoverage() → List[T][source]¶
	Stop CSS coverage measurement and get result.

Return list of coverage reports for all non-anonymous scripts. Each
report includes:

	url (str): StyleSheet url.
	text (str): StyleSheet content.
	ranges (List[Dict]): StyleSheet ranges that were executed. Ranges
are sorted and non-overlapping.	start (int): A start offset in text, inclusive.
	end (int): An end offset in text, exclusive.

Note

CSS coverage doesn’t include dynamically injected style tags without
sourceURLs (but currently includes… to be fixed).

	
coroutine stopJSCoverage() → List[T][source]¶
	Stop JS coverage measurement and get result.

Return list of coverage reports for all scripts. Each report includes:

	url (str): Script url.
	text (str): Script content.
	ranges (List[Dict]): Script ranges that were executed. Ranges are
sorted and non-overlapping.	start (int): A start offset in text, inclusive.
	end (int): An end offset in text, exclusive.

Note

JavaScript coverage doesn’t include anonymous scripts by default.
However, scripts with sourceURLs are reported.

Debugging¶

For debugging, you can set logLevel option to logging.DEBUG for
pyppeteer.launcher.launch() and pyppeteer.launcher.connect()
functions. However, this option prints too many logs including SEND/RECV
messages of pyppeteer. In order to only show suppressed error messages, you
should set pyppeteer.DEBUG to True.

Example:

import asyncio
import pyppeteer
from pyppeteer import launch

pyppeteer.DEBUG = True # print suppressed errors as error log

async def main():
 browser = await launch()
 ... # do something

asyncio.get_event_loop().run_until_complete(main())

Pyppeteer

Headless chrome/chromium automation library (unofficial port of puppeteer)

Navigation

	API Reference	Commands
	Environment Variables
	Launcher
	Browser Class
	BrowserContext Class
	Page Class
	Worker Class
	Keyboard Class
	Mouse Class
	Tracing Class
	Dialog Class
	ConsoleMessage Class
	Frame Class
	ExecutionContext Class
	JSHandle Class
	ElementHandle Class
	Request Class
	Response Class
	Target Class
	CDPSession Class
	Coverage Class
	Debugging

	History

Related Topics

	Documentation overview	Previous: Pyppeteer’s documentation
	Next: History

 Quick search

 ©2017, Hiroyuki Takagi.

 |
 Powered by Sphinx 1.7.9
 & Alabaster 0.7.11

 |
 Page source

